Getting Started
NeurondB
Quick Start Guide
Get NeurondB up and running in minutes. NeurondB is a production-ready PostgreSQL extension that transforms your database into an AI platform with vector search, ML inference, and hybrid retrieval.
Installation
Install NeurondB on your system with these simple steps
Prerequisites
- PostgreSQL 16, 17, or 18
- PostgreSQL development headers
- GCC C compiler
- Build tools (make, autoconf)
System Requirements
- Minimum 4GB RAM recommended
- SSD storage for index performance
- Network access for model downloads
Ubuntu/Debian
# Install PostgreSQL development packages
sudo apt-get update
sudo apt-get install -y postgresql-17 \
postgresql-server-dev-17 \
build-essential \
libcurl4-openssl-dev \
libssl-dev \
zlib1g-dev
# Clone and build NeurondB
git clone https://github.com/pgElephant/NeurondB.git
cd NeurondB
make PG_CONFIG=/usr/lib/postgresql/17/bin/pg_config
sudo make install PG_CONFIG=/usr/lib/postgresql/17/bin/pg_configmacOS
# Install PostgreSQL via Homebrew brew install postgresql@17 # Clone and build NeurondB git clone https://github.com/pgElephant/NeurondB.git cd NeurondB make PG_CONFIG=/opt/homebrew/opt/postgresql@17/bin/pg_config sudo make install PG_CONFIG=/opt/homebrew/opt/postgresql@17/bin/pg_config
Rocky Linux / RHEL
# Install PostgreSQL development packages
sudo dnf install -y postgresql17-server \
postgresql17-devel \
gcc \
make \
curl-devel \
openssl-devel \
zlib-devel
# Clone and build NeurondB
git clone https://github.com/pgElephant/NeurondB.git
cd NeurondB
make PG_CONFIG=/usr/pgsql-17/bin/pg_config
sudo make install PG_CONFIG=/usr/pgsql-17/bin/pg_configQuick Start
Create your first vector search in minutes
Step 1: Create Extension
CREATE EXTENSION neurondb;
Step 2: Create Table with Vector Column
CREATE TABLE documents (
id SERIAL PRIMARY KEY,
title TEXT,
content TEXT,
embedding vector(384)
);Step 3: Generate Embeddings and Search
-- Insert document with embedding
INSERT INTO documents (title, content, embedding) VALUES
('Machine Learning', 'Introduction to ML',
embed_text('Introduction to Machine Learning'));
-- Semantic search
SELECT title, content,
embedding <-> embed_text('artificial intelligence') AS distance
FROM documents
ORDER BY distance
LIMIT 10;You're Ready!
NeurondB is now installed and ready to use. Explore advanced features like HNSW indexing, hybrid search, and RAG pipelines in our comprehensive documentation.