Getting Started

NeurondB
Quick Start Guide

Get NeurondB up and running in minutes. NeurondB is a production-ready PostgreSQL extension that transforms your database into an AI platform with vector search, ML inference, and hybrid retrieval.

Installation

Install NeurondB on your system with these simple steps

Prerequisites

  • PostgreSQL 16, 17, or 18
  • PostgreSQL development headers
  • GCC C compiler
  • Build tools (make, autoconf)

System Requirements

  • Minimum 4GB RAM recommended
  • SSD storage for index performance
  • Network access for model downloads

Ubuntu/Debian

# Install PostgreSQL development packages
sudo apt-get update
sudo apt-get install -y postgresql-17 \
    postgresql-server-dev-17 \
    build-essential \
    libcurl4-openssl-dev \
    libssl-dev \
    zlib1g-dev

# Clone and build NeurondB
git clone https://github.com/pgElephant/NeurondB.git
cd NeurondB
make PG_CONFIG=/usr/lib/postgresql/17/bin/pg_config
sudo make install PG_CONFIG=/usr/lib/postgresql/17/bin/pg_config

macOS

# Install PostgreSQL via Homebrew
brew install postgresql@17

# Clone and build NeurondB
git clone https://github.com/pgElephant/NeurondB.git
cd NeurondB
make PG_CONFIG=/opt/homebrew/opt/postgresql@17/bin/pg_config
sudo make install PG_CONFIG=/opt/homebrew/opt/postgresql@17/bin/pg_config

Rocky Linux / RHEL

# Install PostgreSQL development packages
sudo dnf install -y postgresql17-server \
    postgresql17-devel \
    gcc \
    make \
    curl-devel \
    openssl-devel \
    zlib-devel

# Clone and build NeurondB
git clone https://github.com/pgElephant/NeurondB.git
cd NeurondB
make PG_CONFIG=/usr/pgsql-17/bin/pg_config
sudo make install PG_CONFIG=/usr/pgsql-17/bin/pg_config

Quick Start

Create your first vector search in minutes

Step 1: Create Extension

CREATE EXTENSION neurondb;

Step 2: Create Table with Vector Column

CREATE TABLE documents (
    id SERIAL PRIMARY KEY,
    title TEXT,
    content TEXT,
    embedding vector(384)
);

Step 3: Generate Embeddings and Search

-- Insert document with embedding
INSERT INTO documents (title, content, embedding) VALUES
    ('Machine Learning', 'Introduction to ML', 
     embed_text('Introduction to Machine Learning'));

-- Semantic search
SELECT title, content,
       embedding <-> embed_text('artificial intelligence') AS distance
FROM documents
ORDER BY distance
LIMIT 10;

You're Ready!

NeurondB is now installed and ready to use. Explore advanced features like HNSW indexing, hybrid search, and RAG pipelines in our comprehensive documentation.