DocumentationNeurondB Documentation
Classification Algorithms
Logistic Regression
Binary classification using logistic regression with gradient descent.
Train Logistic Regression
Train model
-- Train with gradient descent
SELECT train_logistic_regression(
'logistic_train', -- Training table
'features', -- Feature column
'label', -- Target column
500, -- Max iterations
0.01, -- Learning rate
0.01 -- Regularization (L2 penalty)
) AS coefficients;Evaluate Model
Evaluate on test data
-- Evaluate on test data with threshold = 0.5
SELECT evaluate_logistic_regression(
'logistic_test', -- Test table
'features', -- Feature column
'label', -- Target column
:coefficients, -- Model coefficients
0.5 -- Classification threshold
) AS test_metrics;Random Forest
Ensemble method using multiple decision trees for robust classification.
Train Random Forest
SELECT train_random_forest_classifier(
'training_data', -- Training table
'features', -- Feature column
'label', -- Target column
100, -- Number of trees
10 -- Max depth
) AS model_id;K-Nearest Neighbors
Instance-based learning that classifies based on nearest neighbors.
KNN classification
SELECT predict_knn(
'training_data', -- Training table
'features', -- Feature column
'label', -- Target column
query_features, -- Query vector
5 -- K neighbors
) AS predicted_label;Next Steps
- Regression - Predict continuous values
- Support Vector Machines - SVM classifiers
- Model Management - Deploy and version models