DocumentationNeurondB Documentation
Quality Metrics
Overview
Evaluate model and search quality using various metrics.
Recall@K
Fraction of relevant items in top K results:
Calculate Recall@K
-- Calculate Recall@K
SELECT recall_at_k(
ARRAY[1, 2, 3], -- retrieved items
ARRAY[1, 2, 5, 6], -- relevant items
5 -- K
);Precision@K
Fraction of retrieved items that are relevant:
Calculate Precision@K
-- Calculate Precision@K
SELECT precision_at_k(
ARRAY[1, 2, 3],
ARRAY[1, 2, 5],
5
);F1@K
Harmonic mean of Precision@K and Recall@K:
Calculate F1@K
-- Calculate F1@K
SELECT f1_at_k(
ARRAY[1, 2, 3],
ARRAY[1, 2, 5],
5
);MRR (Mean Reciprocal Rank)
Average reciprocal rank of first relevant result:
Calculate MRR
-- Calculate MRR
SELECT mean_reciprocal_rank(
ARRAY[
ARRAY[1, 2, 3],
ARRAY[5, 1, 2]
],
ARRAY[1, 1] -- relevant items per query
);Davies-Bouldin Index
Clustering quality metric (lower is better):
Calculate Davies-Bouldin Index
-- Calculate Davies-Bouldin Index
SELECT davies_bouldin_index(
'data_table',
'features',
'cluster_label'
);Learn More
For detailed documentation on all quality metrics, choosing appropriate metrics, benchmarking, and interpretation, visit: Quality Metrics Documentation
Related Topics
- Clustering - Evaluate clustering quality
- Vector Search - Evaluate search quality