DocumentationNeurondB Documentation
Regression Algorithms
Linear Regression
Predict continuous values using supervised learning. Evaluate with R², MSE, MAE, and RMSE metrics.
Train Linear Regression
Train model
-- Train linear regression model
SELECT train_linear_regression(
'linear_train', -- Training table
'features', -- Feature column
'amount' -- Target column (continuous)
) AS coefficients;Evaluate Model
Evaluate on test data
-- Evaluate on test data
SELECT evaluate_linear_regression(
'linear_test', -- Test table
'features', -- Feature column
'amount', -- Target column
:coefficients -- Model coefficients
) AS test_metrics;
-- Returns array: [R², MSE, MAE, RMSE]Ridge Regression
Linear regression with L2 regularization to prevent overfitting.
Ridge regression
SELECT train_ridge_regression(
'training_data',
'features',
'target',
0.1 -- Alpha (regularization strength)
) AS coefficients;Lasso Regression
Linear regression with L1 regularization for feature selection.
Lasso regression
SELECT train_lasso_regression(
'training_data',
'features',
'target',
0.1 -- Alpha (regularization strength)
) AS coefficients;Next Steps
- RAG Pipeline - Build RAG applications
- Hyperparameter Tuning - Optimize model parameters
- Model Management - Deploy models