DocumentationNeurondB Documentation
Support Vector Machines
Prepare Classification Dataset
SVM works best with smaller, well-balanced datasets. We limit to 20,000 samples for computational efficiency.
Create SVM training data
-- Prepare classification dataset for SVM
CREATE TEMP TABLE svm_data AS
SELECT
transaction_id,
features,
CASE WHEN is_fraud THEN 1 ELSE 0 END as label -- Binary labels: 0 or 1
FROM transactions
WHERE features IS NOT NULL
LIMIT 20000; -- Smaller dataset for SVMTrain Linear SVM Classifier
Train SVM using SMO algorithm. Returns support vectors (alpha coefficients) that define the maximum margin hyperplane.
Train SVM
SELECT train_svm(
'svm_train', -- Training table
'features', -- Feature column
'label', -- Target column
0.1, -- C (regularization parameter)
1000 -- Max iterations
) AS support_vectors;Evaluate Model
Evaluate SVM performance on test data.
Evaluate SVM
SELECT evaluate_svm(
'svm_test',
'features',
'label',
:support_vectors
) AS metrics;Next Steps
- Unified ML API - Consistent training interface
- Classification - Other classification algorithms
- Model Management - Deploy SVM models