DocumentationNeurondB Documentation
Unified ML API
Create Training Dataset
First, create a classification dataset with features and labels:
Create training data
-- Create training data: 10,000 transactions
CREATE TEMP TABLE unified_train_data AS
SELECT
i as transaction_id,
ARRAY[
(random() * 100)::real, -- Feature 1: Transaction amount
(random() * 50)::real, -- Feature 2: Account age
(random() * 10)::real -- Feature 3: Location risk score
]::real[] as features,
CASE WHEN random() > 0.7 THEN 1 ELSE 0 END as is_fraud
FROM generate_series(1, 10000) i;Train Multiple Models
Use the unified neurondb.train() function to train different algorithms:
Linear Regression
Train linear regression
SELECT neurondb.train(
'fraud_detection', -- Project name
'linear_regression', -- Algorithm
'unified_train_data', -- Training table
'is_fraud' -- Target column
) as model_id;Logistic Regression
Train logistic regression
SELECT neurondb.train(
'fraud_detection', -- Project name
'logistic_regression', -- Algorithm
'unified_train_data', -- Training table
'is_fraud' -- Target column
) as model_id;Random Forest with Hyperparameters
Train random forest
SELECT neurondb.train(
'fraud_detection', -- Project name
'random_forest', -- Algorithm
'unified_train_data', -- Training table
'is_fraud', -- Target column
NULL, -- Feature columns (NULL = use all)
'{
"n_trees": 20,
"max_depth": 8,
"min_samples": 50
}'::jsonb -- Hyperparameters
) as model_id;Make Predictions
Use neurondb.predict() to make predictions with trained models:
Make predictions
SELECT neurondb.predict(
'fraud_detection', -- Project name
'random_forest', -- Algorithm
features -- Input features
) as prediction
FROM test_data;Deploy Models
Deploy models for production use:
Deploy model
SELECT neurondb.deploy(
'fraud_detection', -- Project name
'random_forest', -- Algorithm
'production' -- Environment
) as deployment_id;Next Steps
- Model Management - Version and deploy models
- Hyperparameter Tuning - Optimize model parameters
- ML Overview - Complete ML documentation